Lemma 17.13.6. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $i : Z \to X$ be the inclusion of a closed subset. The functor $\mathcal{H}_ Z : \textit{Mod}(\mathcal{O}_ X) \to \textit{Mod}(\mathcal{O}_ X|_ Z)$ of Remark 17.13.5 is right adjoint to $i_* : \textit{Mod}(\mathcal{O}_ X|_ Z) \to \textit{Mod}(\mathcal{O}_ X)$.

**Proof.**
We have to show that for any $\mathcal{O}_ X$-module $\mathcal{F}$ and any $\mathcal{O}_ X|_ Z$-module $\mathcal{G}$ we have

\[ \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X|_ Z}(\mathcal{G}, \mathcal{H}_ Z(\mathcal{F})) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(i_*\mathcal{G}, \mathcal{F}) \]

This is clear because after all any section of $i_*\mathcal{G}$ has support in $Z$. Details omitted. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)